일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- #실생활 영어
- 완전탐색
- tensorflow update
- keras
- 영어명언
- #프로젝트
- #Android
- 딥러닝
- text2img
- python __init__
- #영어
- #일상영어
- tokenizing
- Convolution Neural Network
- #opencv
- #1일1영어
- 영어
- TensorFlow
- #English
- python list
- c언어
- #실생활영어
- findContours
- #영어 명언
- python 알고리즘
- word embedding
- convexhull
- 이미지 생성
- opencv SURF
- object detection
- Today
- Total
When will you grow up?
Sequence-to Sequence 본문
자세한 내용은
https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html
Learning Phrase Representations using RNN Encoder-Decoder for Statistical machine Translation
를 참조하시고 keras blog에 있는 내용을 제 공부를 위해 정리한 내용입니다.
Sequence to Sequence Model은 Text Generative Model중 대표적인 모델중에 하나입니다.
Sequence-to-sequence 학습 (Seq2Seq)은 하나의 도메인 (예 : 영어 문장)에서 다른 도메인의 시퀀스
(ex : 프랑스어로 번역 된 동일한 문장)로 시퀀스를 변환하는 모델 교육에 관한 것입니다.
"저것은 무엇인가요?" -> [Seq2Seq model] -> "What is that?"
Sequence to Sequence Model RNN계층이 2개가 사용되는데,
처음 RNN계층은 encoder 역할을 하여, 입력 시퀀스를 처리하고 자체 내부 상태를 반환합니다. 즉 다음 RNN계층(Decoder)의 conditioning 역할이라고 볼수있다.
다른 RNN계층은 decoder 역할을 하여, 대상 시퀸스의 이전 문자가 주어지면 대상 시퀀스의 다음 문자를 예측하도록 훈련되게 만들만드는것이 핵심이며 인코더는 인코더의 상태 벡터를 초기 상태로 사용하며, 디코더가 생성하려고하는 내용에 대한 정보를 얻는 방법이다.
사용된 데이터는 아래주소에 가서 받았다.
http://www.manythings.org/anki/
사용된 data는 Korean - English kor-eng.zip 를 다운받았으며,
알집을 풀고 확인해보면, 625개의 데이터로 구성되어 있으며 데이터형식은 아래와 같다.
[kor-eng파일]
그리고 keras seq2seq 코드는
https://github.com/fchollet/keras/blob/master/examples/lstm_seq2seq.py 를 이용하였다.
기본적으로 파일을 넣고 돌려보면 error 'cp949' 오류가 뜰수 있는데 이 부분은 여기로 들어가서 확인후 고치면 될거같다.
위에코드에서 수정된 부분은 epoch 100 -> 1000으로 늘렸으며, latent_dim 256 ->1024 로 늘려서 확인해 봤다.
기본적으로 100번에 256으로 셋팅되어서 학습할 경우에는 학습이 아래와 같이 잘 안되는 부분을 확인할 수 있느넫,
epoch, latent_dim을 늘려서 확인해보면 괜찮은 결과를 얻을 수 있다.
epoch 100 / latent_dim 256
[결과]
epoch 1000 / latent_dim 1024
[결과]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 1767 178 179 | from __future__ import print_function from keras.models import Model from keras.layers import Input, LSTM, Dense import numpy as np batch_size = 64 # Batch size for training. epochs = 1000 # Number of epochs to train for. latent_dim = 1024 # Latent dimensionality of the encoding space. num_samples = 10000 # Number of samples to train on. # Path to the data txt file on disk. data_path = 'kor-eng/kor.txt' # Vectorize the data. input_texts = [] target_texts = [] input_characters = set() target_characters = set() lines = open(data_path, encoding='UTF8').read().split('\n') for line in lines[: min(num_samples, len(lines) - 1)]: input_text, target_text = line.split('\t') # We use "tab" as the "start sequence" character # for the targets, and "\n" as "end sequence" character. target_text = '\t' + target_text + '\n' input_texts.append(input_text) target_texts.append(target_text) for char in input_text: if char not in input_characters: input_characters.add(char) for char in target_text: if char not in target_characters: target_characters.add(char) input_characters = sorted(list(input_characters)) target_characters = sorted(list(target_characters)) num_encoder_tokens = len(input_characters) num_decoder_tokens = len(target_characters) max_encoder_seq_length = max([len(txt) for txt in input_texts]) max_decoder_seq_length = max([len(txt) for txt in target_texts]) print('Number of samples:', len(input_texts)) print('Number of unique input tokens:', num_encoder_tokens) print('Number of unique output tokens:', num_decoder_tokens) print('Max sequence length for inputs:', max_encoder_seq_length) print('Max sequence length for outputs:', max_decoder_seq_length) input_token_index = dict( [(char, i) for i, char in enumerate(input_characters)]) target_token_index = dict( [(char, i) for i, char in enumerate(target_characters)]) encoder_input_data = np.zeros( (len(input_texts), max_encoder_seq_length, num_encoder_tokens), dtype='float32') decoder_input_data = np.zeros( (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype='float32') decoder_target_data = np.zeros( (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype='float32') for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)): for t, char in enumerate(input_text): encoder_input_data[i, t, input_token_index[char]] = 1. for t, char in enumerate(target_text): # decoder_target_data is ahead of decoder_input_data by one timestep decoder_input_data[i, t, target_token_index[char]] = 1. if t > 0: # decoder_target_data will be ahead by one timestep # and will not include the start character. decoder_target_data[i, t - 1, target_token_index[char]] = 1. # Define an input sequence and process it. encoder_inputs = Input(shape=(None, num_encoder_tokens)) encoder = LSTM(latent_dim, return_state=True) encoder_outputs, state_h, state_c = encoder(encoder_inputs) # We discard `encoder_outputs` and only keep the states. encoder_states = [state_h, state_c] # Set up the decoder, using `encoder_states` as initial state. decoder_inputs = Input(shape=(None, num_decoder_tokens)) # We set up our decoder to return full output sequences, # and to return internal states as well. We don't use the # return states in the training model, but we will use them in inference. decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True) decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states) decoder_dense = Dense(num_decoder_tokens, activation='softmax') decoder_outputs = decoder_dense(decoder_outputs) # Define the model that will turn # `encoder_input_data` & `decoder_input_data` into `decoder_target_data` model = Model([encoder_inputs, decoder_inputs], decoder_outputs) # Run training model.compile(optimizer='rmsprop', loss='categorical_crossentropy') model.fit([encoder_input_data, decoder_input_data], decoder_target_data, batch_size=batch_size, epochs=epochs, validation_split=0.2) # Save model model.save('s2s.h5') # Next: inference mode (sampling). # Here's the drill: # 1) encode input and retrieve initial decoder state # 2) run one step of decoder with this initial state # and a "start of sequence" token as target. # Output will be the next target token # 3) Repeat with the current target token and current states # Define sampling models encoder_model = Model(encoder_inputs, encoder_states) decoder_state_input_h = Input(shape=(latent_dim,)) decoder_state_input_c = Input(shape=(latent_dim,)) decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c] decoder_outputs, state_h, state_c = decoder_lstm( decoder_inputs, initial_state=decoder_states_inputs) decoder_states = [state_h, state_c] decoder_outputs = decoder_dense(decoder_outputs) decoder_model = Model( [decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states) # Reverse-lookup token index to decode sequences back to # something readable. reverse_input_char_index = dict( (i, char) for char, i in input_token_index.items()) reverse_target_char_index = dict( (i, char) for char, i in target_token_index.items()) def decode_sequence(input_seq): # Encode the input as state vectors. states_value = encoder_model.predict(input_seq) # Generate empty target sequence of length 1. target_seq = np.zeros((1, 1, num_decoder_tokens)) # Populate the first character of target sequence with the start character. target_seq[0, 0, target_token_index['\t']] = 1. # Sampling loop for a batch of sequences # (to simplify, here we assume a batch of size 1). stop_condition = False decoded_sentence = '' while not stop_condition: output_tokens, h, c = decoder_model.predict( [target_seq] + states_value) # Sample a token sampled_token_index = np.argmax(output_tokens[0, -1, :]) sampled_char = reverse_target_char_index[sampled_token_index] decoded_sentence += sampled_char # Exit condition: either hit max length # or find stop character. if (sampled_char == '\n' or len(decoded_sentence) > max_decoder_seq_length): stop_condition = True # Update the target sequence (of length 1). target_seq = np.zeros((1, 1, num_decoder_tokens)) target_seq[0, 0, sampled_token_index] = 1. # Update states states_value = [h, c] return decoded_sentence for seq_index in range(100): # Take one sequence (part of the training test) # for trying out decoding. input_seq = encoder_input_data[seq_index: seq_index + 1] decoded_sentence = decode_sequence(input_seq) print('-') print('Input sentence:', input_texts[seq_index]) print('Decoded sentence:', decoded_sentence) | cs |
[전체코드]
'02. Study > Keras' 카테고리의 다른 글
Keras Update(Window10 Conda) (0) | 2018.03.14 |
---|---|
VGG+ResNet(Fashion_MNIST) (0) | 2017.12.10 |
Text Generation(using LSTM) (0) | 2017.11.24 |
Long Short Term Memory(using IMDB dataset) (0) | 2017.11.12 |
Deep Neural Network(using pima dataset) (2) | 2017.11.05 |